مدلسازی پدیده های هیدروکلیماتولوژیکی با استفاده از مدل ترکیبی موجک-هالت وینترز
Authors
Abstract:
بدون شک مدل های هیدروکلیماتولوژیکی نقش مهمی را درمدیریت منابع آب ایفا می کنند. با توجه به اینکه سری های زمانی هیدروکلیماتولوژیکی دارای سه جزء اصلی خودهمبسته، فصلانه و تصادفی می باشند و رفتار مدل هایی که تاکنون ارائه شده اند، نسبت به این اجزاء متفاوت بوده است، در این مقاله از ترکیب تبدیل موجک با مدل هالت-وینترز(HW) جهت مدلسازی سری های زمانی ماهانه رواناب حوضه لیقوان چای، حوضه Trinity، حوضه West Nishnabotna و کمینه دمای ماهانه شهر تبریز استفاده شده است و با مدل های خودهمبسته و فصلانه دیگری چون مدل های آریما(ARIMA)، فصلانه آریما(SARIMA) وHW مقایسه شده است. بدین منظور سری های زمانی مورد نظر توسط تبدیل موجک به چندین زیرسری تجزیه شده و با توجه به تک متغیره بودن مدل HW، طبق دو سناریو در نظر گرفته شده، به عنوان ورودی به مدل های HW وارد می شوند. در سناریو اول فقط زیرسری تقریب و مجموع زیرسری های جزئیات و در سناریو دوم تک تک زیرسری های حاصل از تبدیل موجک به عنوان ورودی به مدل های HW وارد می شوند. نتایج مدلسازی بیانگر اینست که دومین سناریو درنظرگرفته شده برای مدل ترکیبی موجک-هالت وینترز(WHW) یعنی WHW2، بدلیل آنالیز چندمقیاسه و در نظر گرفتن اثر تمام فرکانس های ممکن، باعث افزایش دقت مدلسازی در هر دو سری زمانی رواناب و دمای ماهانه مورد مطالعه شده است.
similar resources
پیشبینی سریهای زمانی مالی با استفاده از روش هالت ـ وینترز چندگام جلوتر
تاکنون روشهای مختلفی برای پیشبینی قیمت کالاها و سودهای سهام بهکار رفته است. با توجه به نوسانات دنیای مالی مهمترین نکته این است که کدامیک از روشهای پیشبینی میتواند در اعمال تصمیم بهینه به مدیران و تصمیمگیرندگان بخشهای اقتصادی و بازرگانی کمک کند. در اغلب مطالعات صورت گرفته تا کنون، برای پیشبینی سریهای زمانی از روشهای خودرگرسیون موسوم به باکس ـ جنکینز برای پیشبینی سریهای زمانی استفا...
full textبررسی تأثیر پارامترهای هیدروکلیماتولوژیکی آجی چای بر تغییرات تراز آب دریاچه ی ارومیه با استفاده از مدل ترکیبی موجک - من کندال
هدف از این مقاله تعیین روند و بررسی ارتباط سریهای زمانی بلندمدت تراز سطح آب دریاچهی ارومیه و دیگر پارامترهای هیدروکلیماتولوژیکی حوضهی شامل بارش، رواناب، دما و رطوبت نسبی، در مقیاسهای ماهانه، فصلی و سالانه با استفاده از آزمون من-کندال و تبدیل موجک گسسته است. آزمون من-کندال و من-کندال دنبالهای برای ترکیبهای مختلف زیر سریهای حاصل از تبدیل موجک گسسته، جهت تعیین زیر سری زمانی جزئی که مسئول ...
full textپیشبینی تبخیر-تعرق مرجع هفتگی با استفاده از مدل ترکیبی موجک- فازی عصبی تطبیقی
تبخیر-تعرقمرجع یکی ازمهمترین و مؤثرترین مؤلفهها در بهینهسازی مصرف آب کشاورزی و مدیریتمنابع آب میباشد. در سالهای اخیر استفاده از روشهای هوش مصنوعی و مدل هیبریدی بر پایه موجک در پیشبینی پارامترهای هیدرولوژیکی بسیار متداول گشته است. در مطالعه حاضر کاربرد روشهای ANFIS و موجک- ANFIS در پیشبینی تبخیر-تعرق مرجع هفتگی مرجع در ایستگاههای همدیدی تبریز، اهواز، بندرعباس و رامسر که دارای اقلیمهای...
full textپیشبینی تبخیر-تعرق مرجع ایستگاه سینوپتیک اهواز با استفاده از مدل ترکیبی موجک – شبکه عصبی GMDH
سابقه و هدف: تخمین دقیق مقدار تبخیر-تعرق مرجع برای انجام بسیاری از تحقیقات ضروری و از مهمترین مسائل در طرحهای آبیاری و زهکشی و منابع آب به شمار میرود. یکی از این مسائل که میتواند در راستای اهداف ذکرشده اعمال شود، پیشبینی تبخیر-تعرق مرجع برای آینده است تا بتوان با برنامهریزیهای مناسب، امکان استفاده بهتر از منابع موجود را فراهم نمود (7). در سالهای اخیر استفاده از روشهای هوش مصنوعی و مدل ...
full textMy Resources
Journal title
volume 14 issue 1
pages 59- 70
publication date 2018-03-21
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023